Breaking News:
  • Registrati

Scienzaonline

Home Tecnologia Tecnologia Generale Le vernici luminescenti si accendono con l’ossigeno

Le vernici luminescenti si accendono con l’ossigeno

E-mail Stampa
(1 voto, media 5.00 di 5)

L’Università di Milano-Bicocca, in collaborazione con l’Istituto Italiano di Tecnologia di Genova, ha messo a punto una nuova vernice luminescente che si attiva in presenza di ossigeno per via di nano sensori di ultima generazione. Lo studio è stato pubblicato su Nature Communications. Applicazioni nei settori aerospaziale, ambientale, sicurezza e smart building.

 

Milano, 16 Marzo 2015 – Una vernice a base di speciali nano-particelle fluorescenti in grado di rilevare variazioni di pressione, diventando tanto più brillante quanto più alta è la pressione dell’aria che le scorre sopra. È il risultato di uno studio su nano-particelle a semiconduttore, condotto da un team di ricerca dell’Università di Milano-Bicocca in collaborazione con l’Istituto Italiano di Tecnologia di Genova.

 

Lo studio, ‘Reversed Oxygen Sensing’ using Colloidal Quantum Wells: towards highly emissive photoresponsive varnishes (doi: 10.1038/ncomms7434), pubblicato sulla rivista Nature Communications, è stato realizzato da un team di ricerca del Dipartimento di Scienza dei Materiali dell’Università di Milano-Bicocca coordinato da Sergio Brovelli e da Francesco Meinardi, docenti rispettivamente in Fisica Sperimentale e Fisica della Materia, in collaborazione con il gruppo guidato da Iwan Moreels dell’Istituto Italiano di Tecnologia di Genova.

Le vernici luminescenti per sensori di gas o di pressione, anche note come pressure sensitive paints, sono costituite da particolari materiali, detti cromofori, dotati di una specifica sensibilità a sostanze chimiche gassose. Quando opportunamente illuminati, brillano con un’intensità che dipende dalla pressione del gas a cui sono soggetti.

Fig.1 (Shuttle)
L’illustrazione mostra le diverse fasi di un test aerodinamico basato sull’utilizzo di una vernice luminescente. La vernice, costituita dai ‘nanofogli’ rappresentati nell’ingrandimento centrale, viene applicata tramite aerografo su un modello in scala ridotta di velivolo o automobile, in questo caso una navicella shuttle. Il modello viene quindi posizionato all’interno di una galleria del vento, sottoposto ad un flusso d’aria e contemporaneamente illuminato con luce ultravioletta. Dove la pressione è maggiore, la vernice si illumina di più: la luce emessa viene quindi raccolta e rielaborata al computer, fornendo in questo modo un’immagine in positivo dei punti di maggiore o minor pressione sulla superficie del velivolo.

Le vernici luminescenti sono utilizzate nello sviluppo delle lampade a basso consumo energetico, dove è necessario valutare i flussi interni di gas, oppure nel campo dell’ingegneria aerospaziale e automobilistica per effettuare test aerodinamici su modelli di velivoli o automobili, in modo da migliorarne le prestazioni ed ottimizzarne i consumi. In questo caso, i modelli vengono ricoperti di vernice, posizionati all’interno di una galleria del vento e esposti a flussi d’aria mentre sono al contempo illuminati da una lampada ultravioletta. La luce emessa dalla vernice è quindi rilevata da una fotocamera ed elaborata da appositi software che, ricostruendo l’immagine del modello, permettono di risalire alla pressione di gas in ogni punto della sua superficie.

 

Fig. 2 (Foto Vacuum/Oxygen)
Fotografie della vernice luminescente in vuoto (vacuum) e in presenza di ossigeno (oxygen), accostate alle corrispondenti rielaborazioni grafiche tridimensionali dell’intensità della luce emessa. Il rettangolo centrale contiene una fotografia dei nanofogli di cui è costituita la vernice ottenuta tramite microscopio elettronico in trasmissione. Come si può apprezzare sia nella foto sia nella rappresentazione 3D, la presenza di ossigeno ‘accende’ la vernice, causando un significativo aumento del segnale luminoso emesso dai nanofogli.

 

 

Il funzionamento delle vernici sensibili alla pressione attualmente in uso si basa però sul fatto che quando interagiscono con gas ossidanti si attivano processi che ne spengono l’emissione luminosa. «Ci si trova quindi nella situazione paradossale per cui più gas significa meno luce: l’immagine della distribuzione della pressione su un modello in un test aerodinamico è di conseguenza in negativo», spiega Monica Lorenzon che lavora su questo progetto nel suo dottorato in Scienza e Nanotecnologia dei Materiali. La realizzazione di una vernice sensibile alla pressione dal comportamento inverso, ovvero che aumenti la propria intensità luminosa in presenza di ossigeno, è stata finora impedita dalla mancanza cromofori adeguati. La ricerca svolta all’Università di Milano-Bicocca ha permesso di sviluppare nano-materiali costituiti da nanofogli di semiconduttore, in grado di generare un segnale luminoso più intenso in presenza di ossigeno, oltre che di rivelare efficientemente variazioni di pressione grazie alle loro ampie superfici sensibili.

«Questa tecnologia, di cui noi abbiamo fornito la prova di principio - spiega Sergio Brovelli - potrà essere sfruttata in tutti i contesti in cui sia necessario misurare con elevata risoluzione spaziale la pressione di gas su una superficie: dall’ingegneria meccanica alla difesa, fino allo sviluppo di dispositivi a basso consumo energetico.»

La ricerca è stata realizzata anche grazie ai contributi di Fondazione Cariplo, della Fondazione Cassa di Risparmio di Tortona e della Comunità Europea.

 

 

Ufficio Stampa Università di Milano-Bicocca

 

Non hai i permessi per commentare

VISITA LA NOSTRA PAGINA FACEBOOK

LAVORI IN CORSO

LAVORI IN CORSO - Nuovo sistema di gestione in collaudo
VI PREGHIAMO DI SCUSARCI PER I DISAGI
STIAMO IMPORTANDO IL DATABASE DI
TUTTI GLI ARTICOLI DI SCIENZAONLINE
DAL 2003 AD OGGI

SCIENZAONLINE.COM

  • Ultime News
  • News + lette
Il Grafene, il nano-materiale che migliorerà la nostra vita

Il Grafene, il nano-materiale che...

2010-11-23 00:00:00

Musicolor

Musicolor

2009-02-18 00:00:00

I Della Robbia e la storia della terracotta invetriata

I Della Robbia e la storia della...

2009-03-18 00:00:00

Giovanni Papi - Prata Caelestia

Giovanni Papi - Prata Caelestia

2009-11-17 00:00:00

Autorizzazioni

 

Scienzaonline con sottotitolo Sciencenew 
Periodico
Autorizzazioni del Tribunale di Roma – diffusioni:
telematica quotidiana 229/2006 del 08/06/2006
mensile per mezzo stampa 293/2003 del 07/07/2003
Pubblicato a Roma – Via A. De Viti de Marco, 50 – Direttore Responsabile Guido Donati

 

Hot Topic

Ultimi Commenti

X

.

Pubblica il tuo Articolo

Hai scritto un Articolo scientifico? Inviaci il tuo articolo, verrà valutato e pubblicato se ritenuto valido! Fai conoscere la tua ricerca su Scienzaonline.com!

Ogni mese la nostra rivista è letta da + di 50'000 persone

Information

Information

Ultime News

Redazione

Contatta la Redazione di Scienzaonline.com per informazioni riguardanti la rivista
Pagina Contatti

Questo sito utilizza cookie per implementare la tua navigazione e inviarti pubblicità e servizi in linea con le tue preferenze. Chiudendo questo banner, scorrendo questa pagina o cliccando qualunque suo elemento acconsenti all'uso dei cookie. To find out more about the cookies we use and how to delete them, see our privacy policy.

I accept cookies from this site.

EU Cookie Directive Module Information